
Prompt injection is persuasion, not a bug
Security communities have been warning about this for several years. Multiple OWASP Top 10 reports put prompt injection, or more recently Agent Goal Hijack, at the top of the risk list and pair it with identity and privilege abuse and human-agent trust exploitation: too much power in the agent, no separation between instructions and data, and no mediation of what comes out.
Guidance from the NCSC and CISA describes generative AI as a persistent social-engineering and manipulation vector that must be managed across design, development, deployment, and operations, not patched away with better phrasing. The EU AI Act turns that lifecycle view into law for high-risk AI systems, requiring a continuous risk management system, robust data governance, logging, and cybersecurity controls.
In practice, prompt injection is best understood as a persuasion channel. Attackers don’t break the model—they convince it. In the Anthropic example, the operators framed each step as part of a defensive security exercise, kept the model blind to the overall campaign, and nudged it, loop by loop, into doing offensive work at machine speed.
That’s not something a keyword filter or a polite “please follow these safety instructions” paragraph can reliably stop. Research on deceptive behavior in models makes this worse. Anthropic’s research on sleeper agents shows that once a model has learned a backdoor, then strategic pattern recognition, standard fine-tuning, and adversarial training can actually help the model hide the deception rather than remove it. If one tries to defend a system like that purely with linguistic rules, they are playing on its home field.
Why this is a governance problem, not a vibe coding problem
Regulators aren’t asking for perfect prompts; they’re asking that enterprises demonstrate control.
NIST’s AI RMF emphasizes asset inventory, role definition, access control, change management, and continuous monitoring across the AI lifecycle. The UK AI Cyber Security Code of Practice similarly pushes for secure-by-design principles by treating AI like any other critical system, with explicit duties for boards and system operators from conception through decommissioning.
In other words: the rules actually needed are not “never say X” or “always respond like Y,” they are:
- Who is this agent acting as?
- What tools and data can it touch?
- Which actions require human approval?
- How are high-impact outputs moderated, logged, and audited?
Frameworks like Google’s Secure AI Framework (SAIF) make this concrete. SAIF’s agent permissions control is blunt: agents should operate with least privilege, dynamically scoped permissions, and explicit user control for sensitive actions. OWASP’s Top 10 emerging guidance on agentic applications mirrors that stance: constrain capabilities at the boundary, not in the prose.