During a Zoom call, Davé pulled up a black-and-white video of the chaos that ensues at feeding time, when salmon compete to gobble up the food dropped into the pen. It’s impossible for the naked eye to draw much meaning from the scene. But the computer vision software tags each fish with tiny colored boxes as it identifies individuals swimming through the frame, or captures them opening their mouths to feed.
Davé says fish farms can use that data in real time, even in an automated way. For instance, they might stop dropping food into the pen when the fish cease feeding.
The cameras and software can perceive other important information as well, including how much the fish weigh, whether they have reached sexual maturity, and whether they show any signs of health problems. They can detect spinal deformities, bacterial infections, and the presence of parasites known as sea lice, which are often too tiny for the human eye to see.
“We knew from the early days that aquaculture would be us getting our feet wet, so to speak,” says Grace Young, Tidal’s scientific lead. “We knew it would be a stepping stone into working on other hard problems.”
Confident that it’s created one viable commercial application, Tidal is now turning its attention to gathering information about natural ocean ecosystems.
“Now is a big moment for us,” she adds, “because we’re able to see how the tools that we built can apply and make a difference in other ocean industries.”
Restoring our coasts
Seagrasses form thick meadows that can run thousands of miles along shallow coastlines, covering up to about 0.2% of the world’s ocean floors. They provide nutrients and habitat to marine populations, filter pollution, and protect coastlines.
The plants are photosynthetic, producing the food they need from sunlight, water, and carbon dioxide dissolved in ocean waters. They store carbon in their biomass and deliver it into the seabed sediments. They also help capture and bury the carbon in other organic matter that floats past.
Globally, seagrass beds may sequester as much as 8.5 billion tons of organic carbon in seafloor sediments and, to a much, much smaller degree, in their biomass. On the high end, these meadows draw down and store away about 110 million additional tons each year.