“Normally, we wouldn’t think of tablets as life-saving equipment, but when emergency hospitals needed to be built during the Covid-19 outbreak, these devices and innovative infrastructure played a critical role,” says Yuanqing.
“In tough times, like the pandemic, it was new IT that kept us connected, productive, and engaged.“ He continues, “The public cloud became more popular by providing the flexibility, scalability, and on-demand accessibility that we needed at the time. But, many enterprise applications and data are still running and stored in private cloud or on-prem data centers. In fact, we will continue to see the co-existence of private, public, and hybrid cloud for compute, storage, and network needs.”
The same Lenovo study found that cloud, software, and computing are key components for the future of a hybrid work environment, with 84% of respondents optimistic about the future of hybrid cloud.
5G networks enable innovation and flexibility: Connecting the essential components of a new IT architecture requires fast, efficient, and customizable networking. The answer: 5G—the next generation of mobile wireless voice and data communication technology. The 2022 Lenovo study also found that 72% of CTOs see opportunities for their companies to use 5G multiaccess edge computing (MEC) even more with the demand for hybrid options dominating the workplace. “The popular hybrid work model that many companies have adopted over the last three years is only possible with a high-speed network,” says Yuanqing.
AI tools mimic human intelligence to solve problems: By combining data, computing power, and sophisticated algorithms, AI can handle much more data much faster than a human worker, can be adjusted by users to accommodate change, can help users learn better processes, and can help anticipate risks such as cost overruns, accidents, and maintenance needs. Using multiple AI technologies and optimized algorithms, Lenovo Research created new processes for its manufacturing facility that dramatically improved production planning processes, with some six-hour processes cut to 90 seconds. Lenovo estimates the AI solution improved order fulfillment by 20% and productivity by 18%.
Consider that a single PC order will launch a series of complex tasks across multiple production lines, and requires alignment of thousands of parameters, such as employee schedules, materials, production processes, and equipment statuses. Lenovo’s largest manufacturing base for PCs, LCFC Electronics, processes up to 690,000 orders per year. While accounting for these large-scale calculations is a challenge for people, an AI engine can easily carry them out, and can flexibly make real-time adjustments for broad or granular objectives. The AI solution’s autonomous learning ability also means the more it operates, the smarter it becomes. “This smart solution has also improved energy efficiency and reduced greenhouse gas emissions by thousands of tons a year,” says Yuanqing.
A look to the future
Technologies such as smart devices, edge computing, cloud computing, 5G, and AI are facilitating a shift from information technology to intelligent transformation. “New IT is shaping the future in many innovative ways,” says Yuanqing. “In the future, the objects you work on, the colleagues you work with, the environment you work in, and the outcome you deliver might all be real or virtual, ranging from AI assistants and digital twins to the metaverse.”
As always, while change surges ahead, technology executives must carefully consider the real-life outcomes of deploying new IT infrastructure. Security, compliance, and usability standards must still be upheld. “Environmental, social, and governance (ESG) goals must be a major consideration,” says Yuanqing. “In the future, every element of new IT architecture must incorporate ESG. When you assess the returns on innovation, it’s not just financial payback but also social impact.”
Learn more about Lenovo’s Global CTO Study here.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.