But there’s one thing people aren’t talking enough about, and that’s the carbon footprint of AI. One part of the reason is that big tech companies don’t share the carbon footprint of training and using their massive models, and we don’t have standardized ways of measuring the emissions AI is responsible for. And while we know training AI models is highly polluting, the emissions attributable to using AI have been a missing piece so far. That is, until now.
I just published a story on new research that calculated the real carbon footprint of using generative AI models. Generating one image takes as much energy as fully charging your smartphone, according to the study from researchers at the AI startup Hugging Face and Carnegie Mellon University. This has big implications for the planet, because tech companies are integrating these powerful models into everything from online search to email, and they get used billions of times a day. If you want to know more, you can read the full story here.
Cutting-edge technology doesn’t have to harm the planet, and research like this is very important in helping us get concrete numbers about emissions. It will also help people understand that the cloud we think that AI models live on is actually very tangible, says Sasha Luccioni, an AI researcher at Hugging Face who led the work.
Once we have those numbers, we can start thinking about when using powerful models is actually necessary and when smaller, more nimble models might be more appropriate, she says.
Vijay Gadepally, a research scientist at the MIT Lincoln lab who did not participate in the research, has similar thoughts. Knowing the carbon footprint of each use of AI might make people more thoughtful about the way they use these models, he says.
Luccioni’s research also highlights how the emissions related to using AI will depend on where it’s being used, says Jesse Dodge, a research scientist at the Allen Institute for AI, who was not part of the study. The carbon footprint of AI in places where the power grid is relatively clean, such as France, will be much lower than it is in places with a grid that is heavily reliant on fossil fuels, such as some parts of the US. While the electricity consumed by running AI models is fixed, we might be able to reduce the overall carbon footprint of these models by running them in areas where the power grid consists of more renewable sources, he says.
While climate change is extremely anxiety inducing, it’s vital we better understand the tech sector’s effect on our planet. Studies like this one might help us come up with creative solutions that allow us to reap the benefits of AI while minimizing the harm.
After all, it’s hard to fix something you can’t measure.