
But when we come to human bodyoids, the issues become harder. Many will find the concept grotesque or appalling. And for good reason. We have an innate respect for human life in all its forms. We do not allow broad research on people who no longer have consciousness or, in some cases, never had it.
At the same time, we know much can be gained from studying the human body. We learn much from the bodies of the dead, which these days are used for teaching and research only with consent. In laboratories, we study cells and tissues that were taken, with consent, from the bodies of the dead and the living. Recently we have even begun using for experiments the “animated cadavers” of people who have been declared legally dead, who have lost all brain function but whose other organs continue to function with mechanical assistance. Genetically modified pig kidneys have been connected to, or transplanted into, these legally dead but physiologically active cadavers to help researchers determine whether they would work in living people.
In all these cases, nothing was, legally, a living human being at the time it was used for research. Human bodyoids would also fall into that category. But there are still a number of issues worth considering. The first is consent: The cells used to make bodyoids would have to come from someone, and we’d have to make sure that this someone consented to this particular, likely controversial, use. But perhaps the deepest issue is that bodyoids might diminish the human status of real people who lack consciousness or sentience.
Thus far, we have held to a standard that requires us to treat all humans born alive as people, entitled to life and respect. Would bodyoids—created without pregnancy, parental hopes, or indeed parents—blur that line? Or would we consider a bodyoid a human being, entitled to the same respect? If so, why—just because it looks like us? A sufficiently detailed mannequin can meet that test. Because it looks like us and is alive? Because it is alive and has our DNA? These are questions that will require careful thought.
A call to action
Until recently, the idea of making something like a bodyoid would have been relegated to the realms of science fiction and philosophical speculation. But now it is at least plausible—and possibly revolutionary. It is time for it to be explored.
The potential benefits—for both human patients and sentient animal species—are great. Governments, companies and private foundations should start thinking about bodyoids as a possible path for investment. There is no need to start with humans—we can begin exploring the feasibility of this approach with rodents or other research animals.
As we proceed, the ethical and social issues are at least as important as the scientific ones. Just because something can be done does not mean it should be done. Even if it looks possible, determining whether we should make bodyoids, nonhuman or human, will require considerable thought, discussion, and debate. Some of that will be by scientists, ethicists, and others with special interest or knowledge. But ultimately, the decisions will be made by societies and governments.
The time to start those discussions is now, when a scientific pathway seems clear enough for us to avoid pure speculation but before the world is presented with a troubling surprise. The announcement of the birth of Dolly the cloned sheep back in the 1990s launched a hysterical reaction, complete with speculation about armies of cloned warrior slaves. Good decisions require more preparation. The path toward realizing the potential of bodyoids will not be without challenges; indeed, it may never be possible to get there, or even if it is possible, the path may never be taken. Caution is warranted, but so is bold vision; the opportunity is too important to ignore.
Carsten T. Charlesworth is a postdoctoral fellow at the Institute of Stem Cell Biology and Regenerative Medicine (ISCBRM) at Stanford University. Henry T. Greely is the Deane F. and Kate Edelman Johnson Professor of Law and director of the Center for Law and the Biosciences at Stanford University. Hiromitsu Nakauchi is a professor of genetics and an ISCBRM faculty member at Stanford University and a distinguished university professor at the Institute of Science Tokyo.